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 Abstract 

SVM generally makes the separator incline to 

the minority class, and this leads to the problem that 

the minority class examples are more easily 

misclassified than the majority class examples for 

imbalanced classification problem. In order to deal 

with the large-scale imbalanced data classification 

problems, a method named stochastic gradient descent 

algorithm for SVM with log-loss function is proposed. 

To resist the separator incline, we define the weight 

according to the size of positive and negative dataset. 

Then, a weighted stochastic gradient descent algorithm 

is proposed to solve large-scale SVM classification. 

Experimental results on real datasets show that the 

proposed method is effective and can be used in many 

applications. 
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I. INTRODUCTION 

As one of the most popular classification 

algorithms, support vector machine (SVM) can be seen 

as a learning approach trying to maximize the margin 

on the training data. It acquires a good theoretical 

foundation for the generalization performance from 

margin theory. CVM and SMO are the successful 

methods to train SVM from large data. Pegasos [1] 

performed stochastic gradient descent (SGD) on the 

primal objective with a carefully chosen step size, and 

SGD can be used for online training of SVM. Krzysztof 
[2] proposed stochastic gradient descent with Barzilai-

Borwein update step for SVM. Wang [3] gives budgeted 

stochastic gradient descent for large-scale SVM 

training. This is achieved by controlling the number of 

SVs through one of the several budget maintenance 

strategies. Nicolas [4] proposed a bi-level stochastic 

gradient for large-scale support vector machine with 

automatic selection of the hyperparameter. Recently 

there are many improved approaches for SGD [5-11], 

such as quasi-Newton stochastic gradient descent, 

accelerated proximal stochastic dual coordinate ascent, 

stochastic dual coordinate ascent methods, SGD based 

on smart sampling techniques. Though SVM are state–

of–the-art methods whether on theoretical results or 

many experimental results, it is not satisfactory when 

the training data is imbalanced. 

 

Many researchers have worked to solve the 

problem of imbalanced data classification so that the 

classification performance of the majority class and that 

of minority class are good at the same time. There are 

three kinds of methods: data-processing, algorithmic 

approach, and boosting approach [12-15]. Data-processing 

is based on sampling method, and the second type is 

based on sample weighting method. The third type uses 

the cost of misclassifications to update the training 

distribution on successive boosting rounds. 

 

SVM generally makes the separator incline to 

the minority class, and this leads to the problem that the 

minority class examples are more easily misclassified 

than the majority class examples. The minority class is 

usually more interesting or costly.  

 

In this paper, we focus on the large and 

imbalanced datasets effective classification problem, a 

stochastic gradient descent algorithm for SVM with 

log-loss is proposed. We replace the hinge-loss function 

by the log-loss function in SVM problem. To resist the 

separator incline, we define the weight according to the 

size of positive and negative dataset. Then, a weighted 

stochastic gradient descent algorithm is proposed to 

solve large-scale SVM classification. Experiments on 

large classification datasets also demonstrated that the 

proposed method has comparable performance. 

 

II.   PEGASOS ALGORITHM 

We describe a simple algorithm of stochastic 

sub-gradient descent for SVM, which is Pegasos [1].  

The runtime of Pegasos algorithm does not depend on the 

number of training examples and thus this algorithm is 

especially suited for large datasets. 

 

Consider a binary classification problem with 

examples   = , , 1, ,i iS y i Nx  , where instance 

d

i Rx  is a d-dimensional input vector and 

 1, 1iy    is the label. Training an SVM classifier 

( ) sgn( )Tf x w x using S, where w is a vector 

associated with each input, which is formulated as 

solving the following optimization problem 

    
2

min ; ,
2

t t tp l y


 w w w x  ,            (1) 

where     ; , max 0,1 T

t t t tl y y w x w x   is the hinge 

loss function and 0   is a regularization parameter 
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used to control model complexity.  

SGD works iteratively. It starts with an initial 

guess of the model weight
1w , and at t-th round it 

updates the current weight
tw as 

1 ( )

(1 ) [y , ]y

t t t t t t

t t t t t t t t

p

  

   

  

w w w

w 1 w x x
         (2) 

where  

1, y , 1
[y , 1]

0, .

t t t

t t t

if

otherwise

 
  



w x
1 w x          (3) 

which is the indicator function which takes a value of 

one if its argument is true (w yields non-zero loss on 

the example (x, y)), and zero otherwise. We then update 

using a step size of 1/ ( t)t  . After a predetermined 

number T of iterations, we output the last iterate wT+1.  

Then, the decision function for SVM with 

SGD is as follows 

1 1( ) sgn( )T

t tf  x w x
                                  

Pegasos algorithm also extends to non-linear 

kernels while working solely on the primal objective 

function, in this case the runtime does depend linearly 

on the training size.  

 

III. LOG-LOSS  SVM CLASSIFICATION FOR 

IMBALANCED DATA 

In order to deal with the large-scale 

imbalanced data classification problems, we propose 

algorithms of stochastic gradient descent for SVM with 

log-loss function.  We replace the hinge-loss function 

by the log-loss function in SVM problem, log-loss 

function can be regarded as a maximum likelihood 

estimate.  

The weighted linear stochastic gradient 

descent for SVM with log-loss (WLSGD) 

Training an SVM classifier using S, which is 

formulated as solving the following optimization 

problem 

    
2

min ; ,
2

t t t tp s l y


  w w w x ,     (4) 

where 

  ( ;( , y )) log(1 exp( y , , ))t t t tl     w x w x      (5) 

is the log-loss function and 0   is a regularization 

parameter used to control model complexity. The log-

loss is a convex function whose gradient w.r.t. w 

satisfies l  x  . To resist the separator incline, we 

define the weight ts according to the size of positive 

and negative dataset. 

SGD works iteratively. It starts with an initial 

guess of the model weight 1w , and at t-th round it 

updates the current weight tw as 

1 ( )

1
(1 ) y

exp(y , ) 1

t t t t t t

t t t t t t

t t t

p

s



  

   

  
  

w w w

w x
w x

 (6)                                                    

We then update using a step size of 1/ ( t)t  . 

After a predetermined number T of iterations, we output 

the last iterate wT+1.  

Then, the decision function for WLSGD is as 

follows 

1 1( ) sgn( )T

t tf  x w x                                 (7) 

To deal with imbalanced dataset, we simply set 

the weight according to the size of positive and 

negative dataset. The data in the majority class have to 

receive lower weight than those in the minority class 

receives. 

When the size of positive dataset is Npos and that 

of negative dataset is Nneg, the weights are defined as 

1/ 1,

1/

pos i

i

neg

N if y
s

N otherwise


 
 .

                                (8) 

The weighted linear stochastic gradient 

descent for SVM with log-loss (WLSGD) is given in 

algorithm 1. 

 

 

The weighted kernelized stochastic gradient 

descent for SVM with log-loss (WKSGD) 

SGD for SVM can be used to solve non-linear 

problems when combined with Mercer kernels. After 

introducing a nonlinear function   that maps x from 

the input to the feature space and replacing x with ( ) x  , 

the optimization problem can be described as 

    
2

min ; ( ),
2

t t t tp s l y


  w w w x   (9) 

where ( ;( , y )) log(1 exp( y , , ))t t t tl     w x w x   is the 

log-loss function. 

It starts with an initial 1 w 0 , update a step 

size 1/ ( t)t  , and for all t we can rewrite 1tw as 

Algorithm 1 WLSGD 

1. Input: data S, regularization parameter  , a 

predetermined number T of iterations ; 

2. Initialize: 1=w 0 ; 

3. Compute the weight ts  according to the 

formulation (8); 

4. for 1, ,t T   do 

5.    choose ( , y )t tx  uniformly at random; 

6.    1 (1 )t t t   w w  

7.    
1 1

1
y

exp(y , ) 1
t t t t t t

t t t

s  
  

w w x
w x

  // 

compute 
+1tw according to the formulation (6) 

8. end for 

9. Output: 1T w  . 
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1

1 1 1 1

1 1 2 2

2 3

1 1

1

( )

1
(1 ) y ( )

exp(y , ( ) ) 1

(1 ) ( )

(1 )(1 ) (1 ) ( ) ( )

(1 ) ( ) (1 ) ( )

(1 ) ( ) ( )

1

t t t t t t

t t t t t t

t t t

t t t t

t t t t t t t t

t t

k k

k k

t t t t t

p

s

t


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

  

      

     
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



   

 

 

  

  


 

     



     

 



 

w w w

w x
w x

w x

w x x

x x

x x







1 2 2 1 1

1

2 1
( ) ( ) ( ) ( )

( )

t t t t

t

j j

j

t

t t

j

t

      

 

 




   



x x x x

x



(10) 

 where 

1

1

1

1

1
y

exp(y , ( ) ) 1

1 1
y

exp(y ( ), ( ) ) 1

1 1
y

exp(y k( , )) 1

j j j j

j j j

j jj

j i i j

i

j jj

j i i j

i

s

s
j i

t

s
j i

t

 



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

























w x

x x

x x

        

1 1 1 1

1 1 1

1

1 1 1

1 1

1
y

exp(y , ( ) ) 1

1 1
= y

exp(y , ( ) ) 1 2

s

y
s s

 

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





w x

0 x

            (11) 

Then, the decision function for WKSGD is as 

follows: 

1 1

1

1
( ) sgn( ( ))=sgn( ( , ))

t
T

t t j j

j

f j k
t

  



 x w x x x                    

(12) 
Only one element of   is changed at each 

iteration. The algorithm does not refer to the implicit 

mapping ( )  and only use the kernel function. This 

WKSGD implementation is given in algorithm 2. 
 

 

IV. EXPERIMENTAL RESULTS  

In this section, we conduct the performance 

comparison of the four methods for real problems: 

MNIST, Ijcnnl, Shuttle, Letter, Usps, Adult. Most of 

the datasets are taken from the UCI machine learning 

repository [16]. Usps is taken from database [17]. The 

multi-classification dataset are artificially divided into 

binary classification dataset, which constitute the 

imbalanced dataset. The description of datasets is 

shown in Table 1.  

 
Table 1  Characteristics of Datasets 

Datasets #Classes #Training  
#Testing 

（Npos、Nneg,） 
#features 

MNIST 10 60000 
10000 

（974、9026） 
780 

Ijcnnl 2 91701 
49990 

（4853、45137） 
22 

Shuttle 7 43500 
14500 

（2155、12345） 
9 

Letter 26 10000 
10000 

（353、9647） 
16 

Usps 10 7291 
2007 

（198、1809） 
256 

Adult 2 24974 
12554 

（119、12435） 
123 

 

In our experiments, LSGD is Pegasos in 

constructing linear SVMs, KSGD is the kernelized 

Pegasos. WLSGD and WKSGD are proposed two 

methods: the weighted linear stochastic gradient 

descent for SVM with log-loss (WLSGD), and The 

weighted kernelized stochastic gradient descent for 

SVM with log-loss (WKSGD). The Gaussian function 

is taken as the kernel 

function
2

2( , ) exp( / ).i j i jk x x x x     Set the kernel 

function width  =1.5, a predetermined number of 

iterations T = 610 . The regularization parameters and   

are shown in Table 2. 

 
Table 2  Parameter Setting 

Algorithms       

LSGD 10-6 10-4 

KSGD 10-3 10-4 

WLSGD 10-6 10-4 

WKSGD 10-3 

10-4(Mnist) 

10-4(Adult) 

10-9(Ijcnn) 

10-8(Shuttle) 

10-7(Letter) 

10-5(Usps) 

 

Algorithm 2 WKSGD 

1. Input: data S, regularization parameter  , a 

predetermined number T of iterations ; 

2. Initialize: 1 w 0   

3. for 1, ,t T   do 

4.    Choose ( , y )t tx   uniformly at random; 

5.     Set 1/ ( t)t  ; 

6. Compute the weight ts  according to the 

formulation (8); 

7. Compute t  according to the formulation (11); 

8.  end for 

9. Output: T . 



International Journal of Recent Engineering Science (IJRES), 

ISSN: 2349-7157, volume4 Issue 2 March to April 2017 

10 

www.ijresonline.com 

Considering the imbalanced nature of the training 

datasets, the geometric mean accuracy (G-mean) is 

adopted to evaluate the performance of our algorithms, 

g a a  
 

where  

_

#positive samples correctly classified
100%,

# total positive samples classified

#negative samples correctly classified
100%.

# total negative samples classified

a

a

  

 

 
 

Table 3  Comparison of the Testing G-Mean 

Algorithms LSGD WLSGD KSGD WKSGD 

MNIST 78.86 71.61 87.60 93.75 

Ijcnnl 51.42 78.79 55.14 72.40 

Shuttle 0.00 48.84 58.15 92.43 

Letter 23.14 77.96 75.63 90.21 

Usps 90.83 90.63 94.66 95.11 

Adult 0.00 78.33 9.16 74.70 

 

Twenty trials were conducted for the four 

algorithms and the average results are shown in Table 3 

and Table 4. Table 3 shows the performance 

comparison of the testing G-mean for the real-world 

problems; the testing G-mean of WLSGD and WKSGD 

is higher than LSGD and KSGD methods in most 

datasets. Table 4 shows the performance comparison of 

average training and testing time of the four methods 

for the real-world problems. As observed from the 

Table 4, WLSGD compare to LSGD with almost same 

learning speed in most datasets. The runtime of 

WKSGD is slightly more than that of KSGD. 

 
Table 4  Time Cost Comparison of the Average Training 

and Testing Time (s) 

Algorithms LSGD WLSGD KSGD WKSGD 

MNIST 597.53 633.60 20.94 24.00 

 6.15 6.07 777.34 815.03 

Ijcnnl 22.94 2.25 0.20 0.83 

 1.11 1.12 31.91 166.84 

Shuttle 11.75 1.81 0.11 0.48 

 0.16 0.16 5.03 26.04 

Letter 21.84 21.14 0.08 0.74 

 0.21 0.20 1.90 28.20 

Usps 277.26 277.25 7.84 9.56 

 0.56 0.54 58.74 74.41 

Adult 128.71 101.92 0.45 2.67 

 1.39 1.15 18.85 129.84 

 

 

V. CONCLUSION 

We focus on the large and imbalanced datasets 

effective classification problem, a method named 

stochastic gradient descent algorithm for SVM with 

log-loss function is proposed. We replace the hinge-loss 

function by the log-loss function in SVM problem. To 

resist the separator incline, we define the weight 

according to the size of positive and negative dataset. 

Then, a weighted stochastic gradient descent algorithm 

is proposed to solve large-scale SVM classification. 

Experimental results on real datasets show that the 

proposed method is effective and can be used in many 

applications. 
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